How will biotic interactions influence climate change-induced range shifts?
نویسندگان
چکیده
Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts.
منابع مشابه
Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming
Climate in part determines species' distributions, and species' distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species' distributions species. However, other abiotic and biotic factors may alter or even r...
متن کاملBiotic interactions influence the projected distribution of a specialist mammal under climate change
Aim To measure the effects of including biotic interactions on climate-based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interac...
متن کاملPredicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.
Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection ...
متن کاملBiotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also...
متن کاملModelling species' range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change.
There is an urgent need for accurate prediction of climate change impacts on species ranges. Current reliance on bioclimatic envelope approaches ignores important biological processes such as interactions and dispersal. Although much debated, it is unclear how such processes might influence range shifting. Using individual-based modelling we show that interspecific interactions and dispersal ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1297 شماره
صفحات -
تاریخ انتشار 2013